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INTRODUCTION

If the foundation of an underground structure settles, the pressure
transmitted to the structure is reduced with a corresponding increase of
pressure in the neighboring soil. This phenomenon is known as arching.
Arching due to deflection of a rigid horizontal strip or base has been
discussed by Terzaghi, 1 and formulas for the pressure transmitted to the
strip are given based on assumed failure planes. The magnitude of the
displacement to produce these failure planes is not known. If the
deflection of the strip is less than a critical value, failure planes
will not develop, and the arching formulas cannot be used effectively.

At zero displacement, the pressure on the strip is equal to the pressure
of the soil above the strip plus any additional overpressure acting on
the soil. The pressure on the strip decreases as the displacement is
increased. 1t should be possible to displace the strip to a eritical
value such that all the pressure acting on it is transferred to the
neighboring soil. The objectives of this study are to establish the
limits of the critical displacement and to find the amount of arching and

the configuration of the pressure distribution on the base as a function
of deflection.

W. D. Finn2 has treated various problems dealing with stresses in
idealized soil media subjected to different types of boundary conditions.
One such problem deals with the stresses in soils due to the deflection
of a rigid horizontal strip. The depth of the soil was taken as
infinity, which imposes a restriction in adapting the solution to prac-
tical problems.

The present study deals with the stresses in a soil field of finite
depth, h, due to deflection of a rigid strip of width 2b. The so0il mass
is assumed to be a homogeneous, elastic, isotropic medium subjected to
high overpressures. I[f there is no deflection of the horizontal strip,
the pressure, p, transmitted to the strip will be equal to the over-
pressure, p , plus the pressure of the soil above the base, Yh, where Y
is the demnsity of the soil. However, if the strip is displaced by an
amount d, the pressure transmitted to it will be reduced. Assuming that
the principle of superposition is valid, the amount of arching (the
amount of pressure that is transferred tc the neighboring soil or the
reduction of pressare on the strip) is equal to the amount of tensile
forces on the base due to the displacement d. However, as the strip
deflects, zones of very high tensile stresses form toward the edges
because of the discontinuous displacement. Thus, when the overpressure
is superimposed on the tensile stress field, there will still be residual
tensile stresses toward the edges of the base. Since the soil media
caunot be expected to transmit tensile stresses, these stresses are not
considered to contribute to arching. This condition is specified when
computing the amount of arching.
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ANALYTICAL DEVELOPMENT

Procedure

Figure 1 represents a section through a soil mass of depth h and
infinite width subjected to an overpressure p . The distance in the z
direction perpendicular to the x-y plane is cOnsidered as infinity.

The width of the rigid horizontal strip is taken as 2b, and the amount
of plate deflection given by d. The total predgsure on the strip with
conditions given in Case (a), Figure 1, can be considered to be equiva-
lent to the superposition of Cases (b) and (c¢). Case (b) represents a
uniform compression on the base exerted by the overpressure and the soil
above the base (p = P, +Yh), with no deflection of the rigid strip.

The distribution of pressure in Case (b) is indicated by line 12. The
tensile stress distribution due to the displacement d alone is assumed
to be given by 34567 of Case (¢). The tensile stresses at the edge are
infinite due to the discontinuity of displacement. The pressure distri-
bution for Case (a) can be assumed to be given by the superposition of
Cases (b) and (c¢) for small displacements of the strip.

It is to be noted that the tensile stresses due to the base
displacement reach the value of the maximum compression, p, at some
critical distance, +x _, from the center of the base. Beyond this
region the net pressu%g on the base is tensile. These resultant tensile
stresses in the region bevond +x from the center of the base are not
considered effective; thus, the fet compressive force acting on the
strip is given by the area 456.

The express objectives of this study are to find the distribution
of tensile stresses as shown in Case (c) by 34567, to determine the
distance +x at which the resultant pressures become tensile, and to
find the amount of arching as shown in Case (a) by 14562.

Evaluation of Stress Function

Since it is assumed that there are no strains in the z direction,
the problem can be considered as one of 'plane strain,'" and the
appropriate equations of the theory of elasticity can be used. 3 The
positive directions of the stresses g and T are shown in
Figure 1. Since the surface is free 0% apglled pregsure, the boundary
conditions for Case (c) at y = h are given by

Uy =0 (1)

Ty = O (2)
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The frictional resistance at the base, y = 0, can be assumed to
prevent any elongation in the x direction at that level. Thus, the
strain in the x direction at y = 0 is

Sx,y -0 = ch - PUy =0 (3)
where
2
p=dF— e p oM (4)

E is the modulus of elasticity of the soil media, and b is Poisson's
ratio.

The displacement, v, in the y direction at the boundary y = O is
given by

v = -d for -b < x < +b
(5)

= 0 for x-b and X>4b

The displacement at the boundary can be expressed in integral form
by using the Fourier cosine integral:

v(x) = 7%— fn cos ax do fx v(h) cos od d) (6)
0 c

Thus, the displacement at y = 0 as defined by Equation 5 can be
obtained as

v(x) =~"%i~ Jm _§;2&gh_ cos ox dv (7)
8}

where ¢ and A are variables of integration.

The displacement, v, can be expressed in terms of strain € in the
y direction as ¥

€. = =@Qg_ - DO (8)

and v = {eydy + g(x) (9)
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To solve for the various stresses_in the media, with the given
boundary conditions, a stress function® in the following form is
assumed:

Q= fx 12 [}edy + Boe®™ + ce™Y + Dae-ay:] cos ax dx (10)
o
o

where A, B, C, and D are constants.

It can be shown that the above stress function,¢ , satisfies the
biharmonic equation

4 4 4
v‘*cp=——a—%—+2 2(P2+ac2=o (11)
Ox 3x"~ Oy dy

The stresses in the media are related to the stress function by the
following relations:

2
o = 9@
X 2
Fop:o
52
T 2 (12)
Y 3y
.. %
Xy dx dy

The constants A, B, C, and D are found by using the boundary con-
ditions (1), (2), (3), and (7) as specified above. The functions g(x)
in Equation 9 can be shown to be zero after appropriate substitutions
and integrations using the condition that v = 0 for h—«. The
relations for the constants A, B, C, and D are given below:

= p
A= L C (-2h - 1) + D (—Zazhé) ]e'z"‘h (13)
B=[2C+D(2ah—l)]e-2ah (14)




b { (-20°h% + toh - 2) B - 20°h%p{ - 28
o2 L(Zafh - 3)B + (uh + l)p} -8 - p
L N
— -
_ ,
e ) ooh -3)8 + (20h 4+ 1)P{ -8B - P
o4 - 382 - 28p + p?
L
_2d
D = sinob (16)
+e 2 ¢ wn® - 10) B2 4 (- 8e%n® + 4)pB
+(- &’n? - 2y p?
- 32 - 28p + pz]
- -

Substitution of the expressions for A, B, C, and D in Equation 10
and subsequent simplification will result in an expression for the stress
function. The stresses anywhere in the medium can be found by using
Equation 12. However, since the g_ stresses over the base are of main
interest, only these are evaluated”in the next section.

Pressure Distribution Across the Width of the Strip

The expression for the stress o_ is obtained by substituting the
stress function in Equation 12 as follows:




_—

42077 20) [ozz i 28 (- h° +hy) + 2p (- h® + hy>}

H(y-am) {_oz By+py) - ZB}

+oz{5(--4h+3y) -ypg -25]

%7y 20) [az { 28 (h°~hy) +29 (hz-hy)}

+ o g?(- 4h + 3y) - vy P—% + 2B
+e 01{5 y + py} + 2B

e"*o‘hi - 382 - 208 +p° }

pe 202 g - 4p% 1% - 8pB 1% - 4p? hz}

+ {- 1OB2 + 4Bp - 292}

+ (- 362 - 2Bp +p2)

—

sin bo
COs Xu&

do

This expression for O can be specialized to obtain the pressure
distribution across the hofizontal strip by integrating and then sub-
stituting vy = 0 in the final results. However, with some care, y

=0

17)
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can be substituted in some terms of the numerator of the integrand
before performing the integration, and the following integral is
obtained for dy o along y = O:

2

- ~ 00 e i do
o 4oh + 4Ohe 20h oYY 2 sin bx cos X

o = -28C (18)
V,0 3 - _ ‘
i:e “h + e 2%h (40102 h2 + CZ) + 1
o

where
- 82 - Bp - p?
Cl=
- 382 - 28p 4+ p?
_
- 1082 + 4gp - 202 —E
f2 " 2 2
- 3% - 2Bp + P J
_
_ 4 !
Cy= -7
- 382 - 28p + o2
G dE = - 2BC,
or 04 = 28

TE (- 382 - Bp + 02

Cl’ CZ’ and 04 are dimensionless constants, and C, has the units of

3
pounds per inch.

The integration of the expression given by Equation 18 is achieved
by expanding the denominator in a series. Thereafter, all but the first
six terms of this alternating series are neglected. The resulting
expression is shown below:




-2ah 2 .2
Oy0 = C,dE fw i}.- e (4Cj” h™ + Cz)
o]

-
+ ¢ 4ah (401012 n? + 02)2 -1
-
e e a® w2 4 )3 - 2 aceh? + e
1 2 1 2
+ 7 o en® + o) - 3 (acyatn?

- e a®n? 4 0 ) - 4 ace?h? +c)% 4 3 (4catn? + ¢y
1 2 1 2 1 2
-
+ e_12C¥h + .. .. e-lah + &xh e-Z‘lh -y
—
2 sin by cos m} do (19)
or _ (1)
Uy,o =2 Uy’o
= (L (2) (3) (4) (5) (6)
%y,0 T %,0 T %0 T O,0 Oy oty 0t (20)
where
-hoy - -
U§12)=04d}zr 1 e%h-f-luhezah-e y 2 sin bxy cos xu
(o]

2
+ Cz) + 1

do




@ B
- - -9 -
0(2)=-CAGE e”2h ACoz2h2+C e[’dh+4a/he2h-eay
y,0 1 2
o L
2 sin b¥ cos x¥ do
o _
{3) ) - 4ok 2,2 2
Uy,o CZ& dE 4 e (Z+Cloz h™ + Cz) 1
(o) —
[e-wh + 4oh e—Zozh - e %Y
[:2 sin b cos x@ do
(4) _ _ d -th w2 2 3 _ 2.2
Uy’o C E e (4C1 h™ + C2) 2 (acloz h™ + C2)
Jo |
e-l’a’h + 4&h e-ZOlh - e-ayi‘
2 sin bx cos xa/:\doz
—
(5) _ -8&h a2 2 4 2.2 2
Gy,o Cl+ dE e (401 h™ + CZ) -3 (40101 h™ + C2) + 1
1o |
e_l'a/h + 4oh e-ZO!h _e-Oly
-
2 sin bo cos xa :‘ da

LN




(6) _ _ -10aoh 0/2 2 5 Q,Z 2 3.
Gy,o = C4 dE e (Z+C1 h™ + CZ) 4 (401 h™ + CZ)
‘o
2.2
+ 3(4C1a h™ + Cz)
e_l*a,h + 4oh e-2a’h - e
2 sin ba cos xu do
- (21)
The expressions for c}(.,lc)) are evaluated individually and then y is
3 b
set to zero. In the expression for c(l()), if the value of zero for y is

bl
substituted in the integrand, the improper integral

Jm sin by cos xv do
o)

does not exist.4 However, with the term e ™ in the integrand, the
value of the integral is given by

]
- C4 dE J e &Y (2 sin ba cos xw)do = - C4 dE btx 2
o y + (b + x)

+ > b-x > (22a)
y -+ (b - x)
and the limiting value as y-—>0 is given by
1 1
-CQ dE r—— + T (22b)
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(1) are obtained after the evaluation of

y,o0 .
the integrals in Equation 21. These expressions for oélg are non-
Bl

The final expressions for o

dimensionalized by E(d/t) to give Si's. Thus,

e
3 = —Ya.0 (23)
E

=l

It can be noted that d/h indicates the uniform strain in the media if
the yielding strip extends to infinity, and E(d/h) represents the
corresponding uniform stress in the media. The expressions for S.'s are
given in Appendix A-I. t

From the preceding it ‘can be seen that

5. =8, (b/h, x/b, p) (24)

and

A digital computer program was writtenm to evaluate the six terms of
the series for several values of the parameters as shown below:

b/h = 0.05 0.4 0.8
0.1 0.5 0.9
0.2 0.6 1.0
0.3 0.7

b= 0.1, 0.25, 0.3333, U.5

x/b = 0 to 0.95 at intervals of 0.05

Selected tabulated results and a consideration of the errors of the
solutions are given in Appendix A-II. Tor practical purposes, the
accuracy is deemed quite adequate.

The results showing S versus x/b for different values of b/h and 1
are given in Figures 2 through 5. 1In all these cases the value of §
reaches infinity at x/b = 1.0 due to the discontinuity at the boundary.
For smaller values of b/h, the curve in the central portion if flatter
than for larger values of b/h. TFor the extreme case of b/h = 1.0 and
w = 0.5, the pressure at the center of the base (at x/b = 0) is very
small in compression, whereas for other portions of the strip the
stresses are tensile. Comparing the plots for various values of u, it
can be seen that there is little difference in the stress distribution
except for the extreme cases of b/h = Ll.0.

11




Computation of Arching

The intensity of the resultant pressure at any point on the strip

when the soil of depth h is subjected to an overpressure of P, is given
by

=p +Yh -0 =p-0 (25)

Presultant V5,0 y,0

Nondimensionalizing by E(d/h), Equation 25 can be rewritten as

( presultant),h S ) R (26)
dE dE

The term P .. oultant 10 Equations 25 and 26 should be considered as
equal to zero for negative values of (ph/dE) - S.

The ratio ixc /b, for which the resultant pressure becomes negative,
can be found for any given set of b/h, B, and ph/dE parameters. Thus,
the total temsile forces, R, over the half-width of strip due to dis-
placement, d, can be obtained by integrating six stress terms as given
by Equation 30 (Appendix A) with respect to x, evaluating the definite
integral from 0 to + X o and adding the tensile forces from x o to b..

Thus, the amount of arching, that is the total pressure transferred to
the neighboring soil, is given by

- i) .
R =% éy +p (b - x_) (27)
where
Xer
61)_ i él) dx
y y,0
)
Thus,
, R
percentage of arching = —;g— 100 (28)
_ cr
=1lA+1 b 100
where

12




b1
- b “er pb
The expressions for Ai's are given in Appendix B-1I.

Given the parameters ph/dE, i , and b/h, a digital computer program
was developed to find the value of xcr/b. The program initially assumes

a value of x/b = 0, computes the value of 8, and compares it with ph/dE.
If the value of S is greater than ph/dE, it indicates that the net
pressure on the base is tensile and an arching of 100 percent is indi-
cated. If the value of S at x/b = 0 is smaller than ph/dE, then a
certain increment is given to x/b and a new value of S (x/b, b/h, M) is
computed and is compared with ph/dF. If the difference between these two

is less than or equal to 10—5, that value of x/b is taken as xcr/b. Lf

. . -5
the difference is greater than 10 ~, the program assumes another value of
%¥/b and the process is repeated until the value of Xcr/b is reached. TFor

values of x/b approaching 1, the computer takes a very long time to find
the value of Xcr/b' In cases where the number of iterations exceed more

than 100, the computer prints out '"aumber of iterations more than 100 to
find xcr” and proceeds with the next problem. After the value of xcr/b

1s computed, the expressions for the Ai's are evaluated and the percentage

of arching is computed using Equation 28. For any problem, the values of
b/h, u, ph/dE, xcr/b” A, Ays Ay, A, Ag, Ag, A, and arching are printed.

The following values are used for the parameter ph/dE, and the range is
considered adequate.

ph/dE = 0.01 0.1 1 10 100 1000
0.0125 0.125 1.25 12.5 125
0.015 0.15 1.5 15 150
0.02 0.2 2 20 200
0.03 0.3 3 30 300
0.04 0.4 4 40 400
0.05 0.5 5 50 500
0.06 0.6 6 60 600
0.07 0.7 7 70 700
0.09 0.9 9 90 900

Selected tabulated results and a stidy of the errors involved in
taking the first six terms of the series are given in Appendix B-II.
The errors for the most part are found to be small.
The value of Xcr/b is zero when the arching is 100 percent, and at
zero percent arching the value of xcr/h is very nearly 1. Figures 6
through 9 indicate the variation of x_r/b with ph/dE for Poisson's ratio
|

equal to 0.1, 0.25, 0.3333. and 0.5.

13
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Figures 10 through 13 indicate the percentage of arching versus the
yield parameter ph/dE for different values of b/h and Poisson's ratio,
. For each value of b/h, the percentage of arching decreases with
increasing values of ph/dE.

Comparing the plots of arching versus ph/dE and xcr/b versus ph/dE

for different values of Poisson's ratio, it can be seen that the effect

of Poisson's ratio can be neglected over a wide range of ph/dE for
small values of b/h.

Illustrative Example

It is desired to find the amount of arching developed when a rigid
horizontal strip 24 feet wide buried under 17 feet of soil cover under-
goes a displacement of 2 inches. The soil is subjected to an overpressure
of 100 psi. The modulus of elasticity of the soil, E, is 10,000 psi,

Poisson's ratio, p, is 0.25, and the density of the soil,Y , is 110 pcf.
Thus,

b =12 ft

h =17 ft
b/h = 0.706

P, = 100 psi

Y = 110 pcf

_ 1@y _ .

Yh Ten 13 psi

P = P, +Yh = 113 psi

. ph _ 113(17)(12)
yield parameter, dg = 1%%1370035 ~ 1.15
2

From the plots in Figure 7 the value of xcr/b = 0.77 and from

Figure 11 the amount of arching can be found to be 52 percent for
b/h = 0.706 and ph/dE = 1.15. The distribution of pressure on the base
can be obtained from Figure 3. At x/b = 0, the pressure, p, at zero

deflection is reduced by Oy 0 = 20.6 psi, where o o is obtained from
3 3

S = ch/dE = 0.21. Thus, the net pressure on the base at x/b = 0 is
113 - 20.6 = 92.4 psi, and the pressure reduces to zero at a distance
+ 0.77 x 12 = + 9.24 feet from the center of the base.

14




CONCLUSIONS

The analysis indicates that arching for the case considered here
varies from 100 percent to zero percent, depending upon the three
parameters, b/h, ph/dE, and p. However, for practical purposes the
effect of Poisson's ratio, 4, can be neglected over a wide range of
parameters. The errors found in taking the first six terms of the
infinite series are small for a majority of cases. Experimental data to
determine the validity of the theory are not available at this time.
However, these results were compared with the data obtained for a case
very similar to the one considered here, and the trends for the amount
of arching are similar to those given here.
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Appendix A

Si SERIES, EQUATION 24

I. EXPRESSIONS FOR Si's

The following notations are used when expressing Si's:

— 7J
AW =| 2=+
L -
- 97
B =| B - E
J:
| b X, | 2
A(L)2(3) = L+ 7 A +P) (29)
[ b X\ | 2 !
B(1)2(J) = 1+ in (1 - g)

The last two notations are used only in the denominators of the expres-
sions for Si's and i 2j-1. The resulting relations are:

_ W
- _Y.0 _ A4l B4l
S170a T %) 9% et tmaa
h

All  Bll
+1 {AZZZ * 3222 }

- N S
1 g all T 311 } (302)
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s 22y _ o | o (. L] 3(a61) - 463  3(m61) - B63
1 27 A623 B623 |

A4l - A43 . B4L - B43
- 1'5[ AL2h T Adoh :l

[ 3(A21) - A23 L 3(B21) - B23
A223 B223

+
(@]
N
—
o |

[ A61 . B61
A621 T B621
|

Co.s| A4l Bal ]
: A422 T BL22
[ A21 B2l ]
+0.5| S5+ 50T (30b)
(3)
Sy.o_
S =
37 ;4
h

2 5(A81) - 10(A83) + A85
C4 C1 { 0.0117188[: A825

+ 5(B81) - 10(B83) + B85
B825

6(A61) ~ 20(A63) + 6(A65)
+ 0.1646091 [ 4626
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+ 6(B61) - 20(B63) + 6(B65)
B626

_ S5(A41) - 10(A43) + A4S
0.375 [: oS

+ 5(B41) - 10(B43) + B4S |
B425 '

3(A81) - A83 | 3(B81) - B83
+ Clc2 {0.03125 [ 2823 + BR23 ]

4(A61) - 4(A63) |, 4(B61) .- 4(B63) |
+ 0.1481481 [ T A624 + BE94 ]

] 3(841) - A43 . 3(B41) - BA43
0.25 [ AL23 + B423 :l %

2 A81 B81
+ (02 - 1) 10'125[%21 + B821:\

2(A61) 2(B61)
+O.1111111[ 4622 + B622 ]

A4l B4l
- 0.25 [_A421 + B4ol ]g (30¢)
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(4
%y.,0

d
= e

7(A101) - 35(A103) + 21(A105) - A107

—_— 3 -
=, | ¢ {; 0.0046080 [

+ 7(B101) - 35(B103) + 21(B105) - B107

Al1027

B1027

J

 0.0769043 | BLABL) - 56(483) + 56(A85) - 8(A8T)
A828
, 8(B81) - 56(B83) + 56(B85) - 8(B87)
B828
© 0.1646091 | Z(A6L) - 35(A63) + 21(A65) - A6
A627
. 1(B61) - 35(B63) + 21(B65) - B6T

7
B627 J
5(A101) - 10(A103) + AlOS
A1025

2
+ Cl C2 { - 0.01152 [
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3
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II. ACCURACY OF THE SOLUTIONS
A digital computer evaluation of Equation 24 was made of the first
sixAS_“,L terms for the parameters b/h, |4, and x/b to study the possible

errors in the alternating series. Typical results are given in Tables I
through VII for several values of b/h.

It is extremely difficult to prove the convergence of the series.
If the sixth term is sufficiently small compared to the first term, the
sum of the series is assumed sufficiently accurate for engineering pur-
poses.

For b/h = 1.0, p = 0.1, and x/b = 0, the value of 8 is 0.1207 and
S6 is -0.0310, and the ratio of S6/Sl is 0.26. Also the convergence

appears to be slow. For x/b = 0.9, the value of Sl is 1.9630 and S

6
is -0.0264, and the ratio of S6/Sll is 0.013. Even though the sixth

term, S is considerably smaller than the first term, it is larger in

6’

magnitude than S_ by a small amount. However, for engineering purposes

5
the value of S = 1.9259 is considered adequate. For b/h = 1.0, p = 0.5,
and x/b = 0, the ratio of ISG/Sl is 0.35. However, observing the terms

in the series, it can be seen that the convergence is more rapid than in
the case where y = 0.1. As the value of b/h decreases, the ratio of
lS6/Sll decreases rapidly. For x/b = 0, the values ofl S6/Sl| are given

for various parameters:
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b/h b o= 0.1 g = 0.5

0.05 0.0002 0.0003
0.10 0.0008 0.0013
0.20 0.0034 0.0053
0.30 0.0082 0.0125
0.40 0.0155 0.0237
0.50 0.0267 0.0401
0.60 0.0430 0.0641
0.70 0.0676 0.0987
0.80 0.1043 0.1417
0.90 0.1617 0.2274
1.00 0.2568 0.3521

These ratios are the maximum possible, and they decrease rapidly
as the value of x/b increases. By observing the values of S,'s for
the four tabulated values of x/b, it can be seen that the coﬁvergence
is slower for small values of Poisson's ratio, |1. Also the influence
of the first term increases rapidly as the value of x/b increases.
Thus, for practical purposes, the accuracy obtained by taking the first
six terms in the series is considered quite adequate.
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Table I.

0.1

0.25

0.3333

0.5

x/b
0
0.3
0.6

0.9

0.3

0.9

0.3
0.6

0.9

0.6

0.9

51
7.9921
8.7847

12.4797

42,1545

7.6192
8.3747
11.9164

40.1873

7.6191
8.3747
11.9163

40.1871

8.4657
9.3052
13.2404

44 .6526

S2

-0.

0143

.0143
.0143

L0142

.0152
.0152
.0151

.0151

.0168
.0168
.0168

.0168

.0275
L0275
.0275

.0274

53

.0042
.0042
.0042

.0042

L0042
.0042
.0042

.0042

.0048
.0048
. 0048

.0048

.0102
.0102
.0102

.0102

29

S4

.0023
.0023
.0023

.0023

.0020
.0020
.0020

.0020

.0022
.0020
.0020

.0020

.0057
.0057
.0057

.0057

S5

.0018

.0018

.0018

.0018

.0013

.0013

.0013

.0013

.0013

.0013

.0013

.0013

.0038

.0038

.0038

.0038

Se6
-0.0017
-0.0017
-0.0017

-0.0017

-0.0009
-0.0009
-0.0009

-0.0009

-0.0009
-0.0009
-0.0009

~0.0009

-0.0027
-0.0Q27
-0.0027

-0.0027

Stress Distribution Across the Base for b/h = 0.05

12.

42.

11.

40.

11.

40.

13.

44,

.9798

7724

4874

1425

.6065

.3621

9038

1748

.6053

.3609

9025

1734

L4437

.2833

2185

6307




0.1

0.25

0.3333

0.5

Stress Distribution Across the

Table II.
x/b Sq
0 3.9643
0.3 4.3606
0.6 6.2183
0.9 21.0460
0 3.7793
0.3 4.,1572
0.6 5.9281
0.9 20.0638
0 3.7793
0.3 4,1571
0.6 5.9281
0.9 20.0637
0 4.1993
0.3 4.6191
0.6 6.5868
0.9 22.2932

82

.0284
.0284
.0282

.0279

.0302
.0301
.0299

.0295

.0335
.0334
.0332

.0328

.0547
.0546
.0541

.0535

S3

.0084
.0084
.0084

.0083

.0085
.0084
.0084

.0084

.0096
.0096

.0095

.0203
.0203
.0202

.0201

30

54

.0046
.0046
.0046

.0046

.0040
.0040
.0040

.0040

.0045
.0045
.0045

. 0044

.0113
.0113
.0113

.0113

Base for b/h = 0.1

S5
0.0035
0.0035

0.0035

0.0035

0.0025
0.0025
0.0025

0.0025

0.0026
0.0026
0.0026

0.0026

0.0075
0.0075
0.0075

0.0075

S¢6

.0033
.0033
.0033

.0033

.0019
.0019
.0019

.0019

.0017
.0017
.0017

.0017

.0055
.0054
.0054

.0054

22

.9399

.3362

L1941

.0220

L7542

L1321

.9033

.0393

.7518

.1297

. 9009

.0369

.1556

.5755

. 5436

.2505




Table III. Stress Distribution Across the Base for b/h = 0.2

b x/b 8 Sy Sq S4 Ss S6 s

0.1 0  1.9198 =0.0556 0.0166 -0.0092 0.0070 =-0.0066 1.8721
0.3 2.1183 -0.0551 0.0166 -0.0092 0.C070 -0.0066 2.0711
0.6 3.0483 -0.0537 0.0164 -0.0091 0.0070 -0.0066 3.0023

0.9 10.4641 -0.0515 0.0161 -0.0090 0.0069 -0.0066 10.4200

0.25 0 1.8302 -0.0588 0.0167 -0.0080 0.0050 -0.0037 1.7814
0.3 2.0195 -0.0583 0.0167 -0.0080 0.0050 -0.0037 1.9712
0.6 2.9061 -0.0567 0.0165 -0.0080 0.0050 -0.0037 2.8591

0.9 9.9757 -0.0542 0.0162 -0.0072 0.0049 -0.0037 9.9311

0.3333 0 1.8302 -0.0652 0.0190 -0.0089 0.0052 -0.0035 1.7768
0.3  2.0195 -0.0646 0.0189 -0.0088 0.0052 -0.0035 1.9666
0.6 2.9061 -0.0628 0.0187 -0.0088 0.0051 -0.0034 2.8548

0.9 9.9757 -~0.0599 0.0183 -0.0087 0.0051 -0.0034 9.9270

0.5 0 2.0336 -0.1064 0.0400 -0.0225 0.0149 -0.0108  1.9488
0.3 2.2439 -0.1053 0.0399 -0.0224 0.0149 -0.0108 2.1601
0.6 3.2290 -0.1022 0.0393 -0.0222 0.0148 -0.0108 3.1478

0.9 11.0841 -0.0972 0.0383 -0.0218 0.0146 -0.0106 11.0074
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0.1

0.25

0.3333

0.5

Table IV,

%/b
0
0.3
0.6

0.9

0.3
0.6

0.9

0.3
0.6

0.9

0.3
0.6

0.9

_L\

[

Stress Distribution Across the

°1

.8436
. 9455
L4182

.1380

.8042
L9014
.3520

.8982

.8042
.9014
.3520

.8982

.8936
.0015
.5022

L4425

-0

-0

52

.1011
.0981
.0894

.0761

.1063
.1029
.0932

.0783

.1175
.1136
.1025

.0854

.1903
.1837
.1646

.1353

.0321
.0316
.0305

.0285

.0320
.0316
.0302

.0280

.0362
.0356
.0339

.0312

.0759
L0745
.0704

.0639

32

.0180

.0179

.0175

.0169

.0157

.0155

.0151

L0144

.0172

.0170

.0165

.0157

.0433

L0428

L0412

.0385

Base for b/h = 0.4

S5 S¢

0.0139 -0.0131 O,

0.0138 -0.0131 ©

0.0136 =-0.0130 1.

0.0133 -0.0128 5

0.0099 -0.0073 0

0.0098 -0.0073 0

0.0096 -0.0072 1.

0.0093 -0.0071 4

0.0101 ~0.0068 0
0.0101 -0.0068 0
0.0098 -0.0067 1

0.0095 ~0.0065 4

0.0290 -0.0212 O
0.0287 -0.0210 O
0.0279 -0.0205 1

0.0265 -0.0197 5

7522

.8618

3423

L0741

.7168

.8170

2762

.8358

.7091
.8096
.2701

.8313

.7436
.8572
.3742

.3393

L




0.1

0.25

0.3333

0.

5

Table V.

x/b
0
0.3
0.6

0.9

0.3
0.6

0.9

0.3
0.6

0.9

0.3
0.6

0.9

51
0.4507
0.5243
0.8553

3.3586

0.4297
0.4998
0.8154

3.2019

0.4297
0.4998
0.8154

3.2018

0.4775
0.5554
0.9060

3.5576

S2
,1303

.1230

.1026

.0730

.1354
.1274
.1049

L0724

. 1487
.1396
L1141

.0773

.2381
.2226
1794

.1173

S3

.0452
. 0440
. 0405

.0351

., 0448
.0434
L0394

.0332

.0503
.0486
.0438

.0363

.1041
.1001
.0886

.0709

33

.0241 ©

.0612 0O

EA

.0261 =0,
.0257 0.
L0246 0.

.0227 0.

.0225 0.
.0221 oO.
.0208 O.

.0188 0.
.0246 0.

.0225 0.

.0200 0.

.0595 0.
.0546 0.

.0469 0.

Stress Distribution Across the Base for

S5

0204
0202
0196

0186

0144
0142
0137

0128

0147

.0145

0138

0127

.0415

0406

0380

0338

b/h = 0.6

S¢
-0.0194
-0.0193
-0.0189

-0.0183

-0.0108
-0.0107
-0.0104

-0.0099

-0.0100
-0.0099
-0.0095

-0.0089

-0.0306
-0.0300
-0.0288

-0.0258

S
0.3405
0.4205
0.7693

3.2983

0.3201
0.3972
0.7322

3.1467

0.3114

0.3894

0.7268

3.1446

0.2932
0.3839
0.7700

3.4723




Table VI. Stress Distribution Across the Base for b/h = 0.8

M x/B 54 S, S S S

3 54 5 6 5

0.1 0  0.2434 -0.1416 0.0554 -0.0333 0.0264 -0.0254  0.1249
0.3 0.3057 =-0.1308 0.0530 -0.0324 0.0259 -0.0251 0.1964
0.6 0.5740 -0.1005 0.0462 -0.0299 0.0246 -0.0243  0.4902

0.9 2.4800 -0.0574 0.0360 -0.0260 0.0226 -0.0229 2.4323

0.25 0 0.2320 -0.1448

(e

.0541 -0.0283 0.0185 -0.0140 0.1174
0.3 0.2915 ~0.1332 0.0514 -0.0274 0.0180 -0.0138 0.1865
0.6 0.5472 -0.1006 0.0438 -0.0248 0.0169 -0.0131 0.4694

0.9 2.3643 -0.0543 0.0326 -0.0208 0.0150 -0.0121 2.3246

0.3333 0 ° 0.2320 -0.1575 0.0602 -0.0307 0.0187 -0.0128 0.1099

0.3 0.2915 -0.1445

(o]

.0570 -0.0296 0.0182 -0.0126 0.1800
0.6 0.5472 -0.1080 0.0478 -0.0263 0.0167 -0.0118  0.4657

0.9 2.3643 -0.0563

(@]

.0344 -0.0214 0.0145 -0.0106  2.3249

0.5 0 0.2578 -0.2478 0.1224 -0.0749 0.0518 -0.0386 0.0707
0.3 0.3239 -0.2262 0.1148 -0.0714 0.049¢ -0.0374 0.1535
0.6 0.6081 -0.1657 0.0936 -0.0616 0.0444 -0.0340 0.4848

0.9 2.6270 -0.0801 0.0627 -0.0468 0.0359 -0.0286 2.5702
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Table VII. Stress Distribution Across the Base for b/h = 1.0

1 2 3 4 Sg S6

0.1 0 0.1207 -0.1378 0.0623 -0.0392 0.0318 -0.0310 0.0068

S

0.3 0.1771 -0.1263 0.0586 =-0.0377 0.0310 -0.0305 0.0721
0.6 0.4106 -0.0924 0.0481 -0.0335 0.0287 -0.0289 0.3325

0.9 1.9630 -0.0418 0.0330 -0.0271 0.0251 -0.0264 1.9259

0.25 0 0.1150 -0.1380 0.0597 -0.0329 0.0220 -0.0159 0.0089
0.3 0.1688 -0.1261 0.0556 -0.0314 0.0212 -0.0165 0.0717
0.6 0.3914 -0.0909 0.0443 -0.0270 0.0191 -0.0153 0.3217

0.9 1.8714 -0.0377 0.0282 -0.0205 0.0159 -0.0135 1.8438

0.3333 0 0.1150 -0.1481 0.0656 =-0.0352 0.0220 -0.0153 0.0040
0.3 0.1688 ~-0.1352 0.0608 -0.0333 0.0211 -0.0149 0.0673
0.6 0.3914 -0.0965 0.0474 -0.0281 0.0186 -0.0135 0.3194

0.9 1.8714 -0.0378 0.0285 -0.0203 -0.0148 0.01l14 1.8452

0.5 0 0.1278 -0.2274 0.1302 -0.0838 0.0594 -0.0450 -0.0387
0.3 0.1876 -0.2068 0.1193 -0.0783 0.0562 -0.0429 0.0351
0.6 0.4349 -0.1448 0.0892 -0.0628 0.0471 -0.0370 0.3266

0.9 2.0794 -0.0500 0.0470 -0.0403 0.0335 -0.0280 2.0416
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Appendix B

Ai SERIES, EQUATION 27

I. EXPRESSIONS FOR Ai's

The integrations of Equetion 27 become less involved if they are
first performed with respect to x and then with respect to o, starting
from Equation 21. The expressions for Ai's are given by Equation 32.

The following notations are used in Equation 32:

c ™ = |7 a+-5
— x J
DD = [ -
[~ % 1 2 J
C(i)2(J) = 1+ Z% @+ (31)
| -
~ % 720 J
. _ b cr
D(i)2(J) = 1+ n a - ~g—)
[ _

where 1 = j and the last two notations are used only in the denominators
except when used with logarithms.

(D)
A = —L—
1 pb

N
& 1 £421 R SRR S - Cl1
= ( )/@_) 2 o8 o1 t 2 c221 T D221 tog 1171 | (32a)

2 pb

36




EEI

C 0.0234375

+ 0.1975309

-1+C62 -1+ D62
- 0.1111111[ C622 5622 :l
_o.05 | =—L+3(C42) - 1 + 3(D42)
) C423 D423
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II. ACCURACY OF THE SOLUTIONS

Typical results are given in Tables VIII through XIV for the digital
~omputer evaluation of Equation 28 for the first six A, terms, consider-
ing the parameters b/h, W, ph/dE, and xcr/b. As for the Si’s, the

convergence of the series is very difficecult to prove. It is presumed
that the results are acceptable if the last term of the series is
sufficiently small compared to the first term. From the results it can
be observed that the error is large for large values of b/h, small
values of ph/dE, and large values of yu. However, the convergence is
poor for small values of K. The following table represents the maximum
ratio of IA6/A1‘ for all values of b/h where p = 0.5.

b/h ph/dE  Values of ‘A6/A1l
0.05 9.0 0.0004
0.1 5.0 0.0011
0.2 2.0 0.0051
0.3 1.25 0.0121
0.4 0.9 0.0223
0.5 0.5 0.0395
0.6 0.3 0.0635
0.7 0.2 0.0956
0.8 0.06 0.1465
0.9 0.01 0.2260
1.0 0.01 0.3166

For other values of ph/dE and U the error is smaller than that indicated
above.
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Figure 2. Pressure distribution on the base for y = 0.1,
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Figure 4. Pressure distribution on the base for u = 0.3333.
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